《长方体和正方体的认识》教案

时间:2024-07-12 18:52:53
《长方体和正方体的认识》教案

《长方体和正方体的认识》教案

作为一名老师,就难以避免地要准备教案,借助教案可以有效提升自己的教学能力。那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的《长方体和正方体的认识》教案,仅供参考,欢迎大家阅读。

《长方体和正方体的认识》教案1

教学目标

(一)理解长方体和正方体表面积的意义。

(二)理解并掌握长方体和正方体表面积的计算方法。

(三)培养和发展学生的空间观念。

教学重点和难点

(一)长方体、正方体表面积的意义和计算方法。

(二)确定长方体每一个面的长和宽。

教学用具

教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

学具:长方体、正方体纸盒、剪刀。

(二)学习新课

1.长方体和正方体表面积的意义。

教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。

教师:长方体有几个面?学生:6个面。

教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。

请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。

再请同学拿着正方体盒子,两人一组边摸边说什么是正方体的表面积。

教师:(拿着长方体盒子)这个长方体的表面积能一眼全看到吗?想一想有什么办法能一眼全看到?

学生讨论。(把六个面展开放在一个平面上。)

教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。

教师:请再说一说什么是长、正方体的表面积。(学生口答。)

教师板书:长方体或正方体6个面的总面积,叫做它的表面积。

2.长方体表面积的计算方法。

(1)请同学拿着自己的长方体(用展开图折上)。教师:请量出它的长、宽和高,说一说哪些面大小相等?指出相邻的三个面各用哪两条棱作为长和宽?

学生四人一组边操作边讨论后归纳:

上下两个面大小相等,它是由长方体的长和宽作为长和宽的;前后两个面大小相等,它是由长方体的长和高作为长和宽的;左右两个面大小相等,它是由长方体的高和宽作为长和宽的。 教师:对长方体实物,我们已经会找它每个面对应的长和宽了,在平面图上会不会找呢?

请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。

(2)请同学们用新学的知识来解答下面的问题:例1(投影片)做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少厘米2硬纸板?

3.正方体表面积的计算方法。

(1)教师:看看自己的正方体表面展开图,能说出正方体的表面积如何求吗?

(2)试解下面的题。

例2(投影片)一个正方体纸盒,棱长3厘米,求它的表面积。

请同学们填在书上,一位同学板书:

32×6

=9×6

=54(厘米2)

答:它的表面积是54厘米2。

教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?

学生:少一个面。列式:32×5

教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。

(3)练习:课本P26做一做。(请两位同学写投影片,其余同学做本上。)

用学生投影片集体订正。

(三)巩固反馈

课堂教学设计说明

本节新课教学分为三部分。

第一部分教学长、正方体表面积的意义。

第二部分教学长方体表面积的计算方法。

第三部分教学正方体表面积的计算方法。

板书设计

《长方体和正方体的认识》教案2

教学目标:

1、知识技能目标:掌握长方体和正方体的特征,理解长方体和正方体的关系。

2、能力目标:指导启发学生运用观察、测量等方法,探究长方体和正方体的有关特征,开发学生智能。

3、情感态度目标:通过观察、摆弄实物帮助学生建立起空间观念。

教具学具:

教师准备:墨水盒、牙膏盒、魔方、乒乓球等。

学生准备:边长1厘米的小正方体(每组至少8个)、长方体和正方体实物。

教学手段:多媒体辅助教学

教学过程:

一、导入新课

师:请同学们来回忆:我们学过了哪些平面图形?(生答)这些图形都是由什么围成的?(线段)。课前老师曾让同学们把数学书最后两页的组合图形纸板沿虚线内折,然后围起来,你围成了什么形体?举起来让大家看看。(长方体和正方体)长方体和正方体与我们学过的平面图形有什么不同?(它们是由面围成的,有一定的厚度。)

师:像这样由面围成的图形,都占有一定的空间,我们把他们叫做立体图形。比如:(出示实物)墨水盒、魔方、牙膏盒、皮球、灯罩等这些物体的形状都是立体图形。你能不能举出几个形状是长方体或正方体的例子?(学生举例)

那么长方体和正方体都有哪些特征呢?这节课,我们就来认识长方体和正方体。(板书课题)

二、探究新知

1、认识长方体各部分名称

师:长方体有什么特征呢?要探讨这个问题,首先让我们来认识一下长方体各部分的名称。请同学们拿出准备的长方体学具或实物,用手摸一摸,你摸到了长方体的哪一部分?然后打开书20页,看看你摸到的部分在长方体中叫什么?看谁最先找到答案。(根据学生回答板书:面、棱、顶点)

师:请同学们放下书,看老师的演示,边看边用手摸摸长方体学具,感觉一下长方体的面、棱、顶点。(电脑演示长方体的面、棱、顶点)

2、认识长方体的特征(分组合作学习)

师:认识了长方体的面、棱、顶点,下面我们就来研究长方体的这几部分各有什么特征?(出示学习提纲):1、长方体有几个面?这些面是什么图形?相对的面面积有什么关系?2、长方体有几条棱?每组相对的棱长度有什么关系?3、长方体有几个顶点?请同学们根据学习提纲自由选择方法合作学习21页内容。看看你用了哪些方法,都学会了什么?(研讨)

师:谁能把你们的学习结果汇报一下。

生:长方体有6个面,每个面都是长方形,也可能有两个相对的面是正方形。

师:你有这样的长方体吗?(有,出示)哪是相对的面?有几组 ……此处隐藏20705个字……p>(学生疑惑地用眼神告诉我:这有什么“为什么”?事实就是这样嘛!)

师:没问题?我先来说一个,长方体有6个面,每个面都是(长方形),长方形有4条边,这些边就是长方体的(棱)。那长方体就应该有6×4=24条棱,可为什么只有12条棱呢?

(学生仔细打量眼前的长方体模型,积极探索着答案。)

生:(跑到黑板前指着直观图)就拿这条棱来说,它既是上面的一条边,又是前面的一条边。所以,在计算时,同一条棱算了两次。其他的棱也是这样。

师:那应该怎样算呢?

生(齐):6×4÷2=12条棱。

师:你现在也能提一些“为什么”的问题吗?

生1:长方体的6个面,每个面上有4个顶点,能算出24个顶点,为什么只有8个顶点?

师:问得好!你有答案吗?

生1:我有答案,但想让其他同学回答。

生2:(指着直观图上的一个顶点)这个顶点既是上面的一个顶点,又是前面的一个顶点,还是右面的一个顶点。也就是说这个顶点计算时被算了3次。其他顶点也一样。所以应该用6×4÷3=8个顶点。

师:真是太好了!刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?

生1:能不能由棱的条数推算出顶点的个数、面的个数?

生2:由顶点的个数是不是也能推算出面的个数和棱的条数?

师:真会提问题!同学们有兴趣研究吗?

(学生兴致勃勃地研究并汇报了两个问题。)

师:观察一下这6道算式,在利用面、棱、顶点之间关系推算时,有什么规律?

生1:都先算出了24。这是为什么?

(学生陷入了沉思,不一会儿,陆续举起手。)

生2:这儿的24表示的是24条边(棱)或者24个顶点。因为长方体是由6个长方形围成的立体图形。这6个长方形一共有24条边、24个顶点。

生3:推算时,就要先算出24条边或24个顶点,再看看与要求的面、棱、顶点之间的数量关系,计算出最后的结果。

师:老师也没想到,同学们通过自己的积极思考,弄清楚了这么多“为什么”。

……

师:同学们通过看一看、量一量、比一比等多种方法发现了长方体面和棱的特征。除此之外,有没有其他方法研究面和棱的特征?

生:通过重叠比较,我们发现长方体相对的面完全相同。两个长方形完全一样,也就是它们的长和宽分别相等。所以,长方体相对的棱长度相等。

师:反过来呢?

生:通过测量,我们发现相对的棱长度相等。而相对面的长和宽分别是两组相对的棱,长和宽分别相等的长方形完全相同。

师:真厉害!看来,研究长方体的特征不仅可以通过操作来发现,更可以运用所学的知识思考来发现。

【教学反思】

一、数学学习是经验的,也是推理的

新课程注重向学生提供充分的从事数学活动的机会,使学生获得广泛的数学活动经验,这符合学生的认知规律和心理特征。但如今的课堂上不乏学生的观察、操作、猜测、验证等活动,但很少运用数学知识进行简单的推理。有人说,推理是中学的事。其实不然,推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。如果忽视学生推理能力的培养,会在很大程度上阻碍数学思维的发展。所以,重视学生在具体、丰富的活动中经历数学知识的形成过程,获得体验的同时,更要注重学生从已有的数学事实出发,展开合情推理和演绎推理。小学几何常被称为“经验几何”,这并不意味着几何教学无须承担发展推理能力的重任。对于六年级学生来说,已经积累了相当丰富的研究平面图形的知识经验,已经初步认识了立体图形,并且积累了丰富的观察物体的经验,这些知识经验基础使学生探索长方体的特征没有任何障碍。因此,从已有的知识经验出发,更好地发展学生的空间观念理应成为教学的诉求。实践表明:从学生熟悉的面(长方形)的数量和特征出发,联系面围成体的活动经验,对棱的条数、顶点的个数及棱的特征展开验证性推理是非常有价值的。这其中有凭借经验和直觉,通过归纳和类比进行的推测,也有依据已有的某个事实,按照逻辑和运算进行的推理。形式化结果的解释也蕴含着丰富的推理,由面到棱和由棱到面的特征推断让我们看到了证明的雏形。这些都促进了学生数学思维的发展。

二、空间观念是具象的,也是关系的

一般认为,小学阶段几何图形教学承载的空间观念目标主要是能进行实物和图形间转换。这种空间观念是相对“具象的”。实践表明:要实现实物与图形间的转换,学生的认知结构中必须建立准确的模型。这就要求,对图形的认识不能停留于直观建构,而要适度抽象为头脑中的模型,这种模型的稳固形成依赖于对图形基本元素关系的理性思辨。否则,学生头脑中的模型依然是模糊的,不能随时顺利提取和准确利用。引导六年级的学生有意识地思考长方体的基本元素——面、棱、顶点之间关系,不仅必要而且可行。这种关系的找寻以棱和顶点的概念为出发点,以各自数量之间的关系、面和棱的特征联系为主要研究对象。教师引导学生以长方体的模型和直观图为依托,首先考量面的个数与棱的条数之间的关系,深化了对“两个面相交的线叫做棱”这一概念的认识;接着由面的个数到顶点的个数的推算则从面的角度揭示了顶点的形成;后来又逆向地从棱到顶点、棱到面、顶点到棱、顶点到面等角度全方位、深刻揭示了各元素之间的内在联系:三条棱相交的点叫做顶点,四条棱围成了一个面,一条棱的两个端点就是两个顶点,一个长方形四个角的顶点就长方体的顶点等。教者还引导学生从面的特征推理出棱的特征、从棱的特征推理出面的特征,这也深刻揭示着面和棱之间的密切联系,沟通了面与体的内在联系。这些元素关系的建立极大地明晰了学生认知结构中的长方体模型,为后面学习长(正)方体展开图、长方体的表面积等知识提供了坚实的观念基础。

三、课堂思考是个体的,也是群体的

学生独立思考的能力是在教师的引导和与同伴的思维碰撞中逐渐形成和发展的。课堂中学生要进行独立思考,但个体思维的成果也需要与同伴的交流和碰撞。这其中,教师是促进个体思维深入、群体思维共享的组织者和引导者。当个体思维依靠自身的力量不能打开或难以实现转换时,教师的示范和引导便成为重要的源头。正如学生面对由对面、棱、顶点的“是多少”向“为什么”的思考跃进时,教师示范提出了“为什么”的问题,将思维聚焦于利用关系推算数量,从而搭建起一个对原有信息整理分类、分析关系的思维桥梁。这也激活了学生自主提问和思考的方向,学生的思维随着有价值的问题的提出不断展开,个体思维的丰富成果不断被演化和推广。在由此及彼的类比处,教师适时的点拨:“刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?”再次打开学生的思路,促进自主提问和思考的深入。在研究似乎可以告一段落时,教师画龙点睛式的追问“有什么规律”,再次引发群体思维的风暴。而后,学生群体水到渠成地“证明”棱的特征、面的特征,更展现出思维的无限潜力。这么丰富的思辨成果只有在教师的引导和点拨下通过群体的思维才能不断地展现。

《《长方体和正方体的认识》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式