二次根式教案
作为一名优秀的教育工作者,编写教案是必不可少的,教案是保证教学取得成功、提高教学质量的基本条件。快来参考教案是怎么写的吧!以下是小编为大家收集的二次根式教案,欢迎大家分享。
二次根式教案1活动1、提出问题
一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?
问题:10+20是什么运算?
活动2、探究活动
下列3个小题怎样计算?
问题:1)-还能继续往下合并吗?
2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?
二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。
活动3
练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)
创设问题情景,引起学生思考。
学生回答:这个运动场要准备(10+20)平方米的草皮。
教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。
我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。
教师引导验证:
①设=,类比合并同类项或面积法;
②学生思考,得出先化简,再合并的解题思路
③先化简,再合并
学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。
教师巡视、指导,学生完成、交流,师生评价。
提醒学生注意先化简成最简二次根式后再判断。
二次根式教案2一、内容和内容解析
1.内容
二次根式的除法法则及其逆用,最简二次根式的概念。
2.内容解析
二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.
基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.
二、目标和目标解析
1.教学目标
(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;
(2)会进行简单的二次根式的除法运算;
(3) 理解最简二次根式的概念.
2.目标解析
(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;
(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.
(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.
三、教学问题诊断分析
本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.
本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.
四、教学过程设计
1.复习提问,探究规律
问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?
师生活动 学生回答。
【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.
五、目标检测设计
二次根式教案3一、教学目标
1.了解二次根式的意义;
2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3. 掌握二次根式的性质 和 ,并能灵活应用;
4.通过二次根式的计算培养学生的逻辑思维能力;
5. 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美.
二、教学重点和难点
重点:(1)二次根的意义;(2)二次根式中字母的取值范围.
难点:确定二次根式中字母的取值范围.
三、教学方法
启发式、讲练结合.
四、教学过程
(一)复习提问
1.什么叫平方根、算术平方根?
2.说出下列各式的意义,并计算:
通过练习使学生进一步理解平方根、算术平方根的概念.
观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中 ,
表示的是算术平方根.
(二)引入新课
我们已遇到的这样的式子是我们这节课研究的内容,引出:
新课:二次根式
定义: 式子 叫做二次根式.
对于 请同学们讨论论应注意的问题,引导学生总结:
(1)式子 只有在条件a0时才叫二次根式, 是二次根式吗? 呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.
(2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的外在形态.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.
例1 当a为实数时,下列各式中哪些是二次根式?
分析: , , , 、 、 、 四个是二次根式. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a-10时,a+10又如当0
例2 x是怎样的实数时,式子 在实数范围有意义?
解:略.
说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义.
例3 当字母取何值时,下列各式为二次根式:
(1) (2) (3) (4)
分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式.
解:(1)∵a、b为任意实数时,都有a2+b20,当a、b为任意实数时, 是二次根式.
(2)-3x0,x0,即x0时, 是二次根式.
(3) ,且x0,x0 ……此处隐藏9664个字……
例2 把下列各式化成最简二次根式:
4.总结
把二次根式化成最简二次根式的根据是什么?应用了什么方法?
当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。
当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。
此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。
三、巩固练习
1.把下列各式化成最简二次根式:
2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。
四、小结
本节课学习了最简二次根式的定义及化简二次根式的方法。同学们掌握用最简二次根式的定义判断一个根式是否为最简二次根式,要根据积的算术平方根和商的算术平方根的性质把一个根式化成最简二次根式,特别注意当被开方数为多项式时要进行因式分解,被开方数为两个分数的和则要先通分,再化简。
五、布置作业
下列各式化成最简二次根式:
二次根式教案14一、教学过程
(一)复习提问
1.什么叫二次根式?
2.下列各式是二次根式,求式子中的字母所满足的条件:
(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值为任意实数.
(二)二次根式的简单性质
上节课我们已经学习了二次根式的定义,并了解了第一个简单性质
我们知道,正数a有两个平方根,分别记作零的平方根是零。引导学生总结出,其中,就是一个非负数a的算术平方根。将符号看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:
这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?
请分析:引导学生答如时才成立。
时才成立,即a取任意实数时都成立。
我们知道
如果我们把,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.
例1计算:
分析:这个例题中的四个小题,主要是运用公式。其中(2)、(3)、(4)题又运用了整式乘除中学习的积的幂的运算性质.结合第(2)小题中的,说明,这与带分数。因此,以后遇到,应写成,而不宜写成。
例2把下列非负数写成一个数的平方的形式:
(1)5;(2)11;(3)1。6;(4)0。35.
例3把下列各式写成平方差的形式,再分解因式:
(1)4x2—1;(2)a4—9;
(3)3a2—10;(4)a4—6a2+9.
解:(1)4x2—1
=(2x)2—12
=(2x+1)(2x—1).
(2)a4—9
=(a2)2—32
=(a2+3)(a2—3)
(3)3a2—10
(4)a4—6a2+32
=(a2)2—6a2+32
=(a2—3)2
(三)小结
1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.
2.关于公式的应用。
(1)经常用于乘法的运算中.
(2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.
(四)练习和作业
练习:
1.填空
注意第(4)题需有2m≥0,m≥0,又需有—3m≥0,即m≤0,故m=0.
2.实数a、b在数轴上对应点的位置如下图所示:
分析:通过本题渗透数形结合的思想,进一步巩固二次根式的定义、性质,引导学生分析:由于a<0,b>0,且|a|>|b|.
3.计算
二、作业
教材P.172习题11.1;A组2、3;B组2.
补充作业:
下列各式中的字母满足什么条件时,才能使该式成为二次根式?
分析:要使这些式成为二次根式,只要被开方式是非负数即可,启发学生分析如下:
(1)由—|a—2b|≥0,得a—2b≤0,
但根据绝对值的性质,有|a—2b|≥0,
∴|a—2b|=0,即a—2b=0,得a=2b.
(2)由(—m2—1)(m—n)≥0,—(m2+1)(m—n)≥0
∴(m2+1)(m—n)≤0,又m2+1>0,
∴ m—n≤0,即m≤n.
说明:本题求解较难些,但基本方法仍是由二次根式中被开方数(式)大于或等于零列出不等式.通过本题培养学生对于较复杂的题的分析问题和解决问题的能力,并且进一步巩固二次根式的概念.
三、板书设计
二次根式教案15一、教学目标
1.理解分母有理化与除法的关系.
2.掌握二次根式的分母有理化.
3.通过二次根式的分母有理化,培养学生的运算能力.
4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想
二、教学设计
小结、归纳、提高
三、重点、难点解决办法
1.教学重点:分母有理化.
2.教学难点:分母有理化的技巧.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习小结,归纳整理,应用提高,以学生活动为主
七、教学过程
【复习提问】
二次根式混合运算的步骤、运算顺序、互为有理化因式.
例1 说出下列算式的运算步骤和顺序:
(1) (先乘除,后加减).
(2) (有括号,先去括号;不宜先进行括号内的运算).
(3)辨别有理化因式:
有理化因式: 与 , 与 , 与 …
不是有理化因式: 与 , 与 …
化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).
例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?
引入新课题.
【引入新课】
化简式子 ,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以 的有理化因式,而这个式子就是 ,从而可将式子化简.
例2 把下列各式的分母有理化:
(1) ; (2) ; (3)
解:略.
注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.