高中数学教案

时间:2024-07-12 19:16:54
高中数学教案(汇编15篇)

高中数学教案(汇编15篇)

作为一无名无私奉献的教育工作者,总不可避免地需要编写教案,编写教案助于积累教学经验,不断提高教学质量。来参考自己需要的教案吧!以下是小编为大家整理的高中数学教案,仅供参考,大家一起来看看吧。

高中数学教案1

【课题名称】

《等差数列》的导入

【授课年级】

高中二年级

【教学重点】

理解等差数列的概念,能够运用等差数列的定义判断一个数列是否为等差数列。

【教学难点】

等差数列的性质、等差数列“等差”特点的理解,

【教具准备】多媒体课件、投影仪

【三维目标】

㈠知识目标:

了解公差的概念,明确一个等差数列的限定条件,能根据定义判断一个等差数列是否是一个等差数列;

㈡能力目标:

通过寻找等差数列的共同特征,培养学生的观察力以及归纳推理的能力;

㈢情感目标:

通过对等差数列概念的归纳概括,培养学生的观察、分析资料的能力。

【教学过程】

导入新课

师:上两节课我们已经学习了数列的定义以及给出表示数列的几种方法—列举法、通项法,递推公式、图像法。这些方法分别从不同的角度反映了数列的特点。下面我们观察以下的几个数列的例子:

(1)我们经常这样数数,从0开始,每个5个数可以得到数列:0,5,10,15,20,()

(2)2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目,该项目工设置了7个级别,其中较轻的4个级别体重组成的数列(单位:kg)为48,53,58,63,()试问第五个级别体重多少?

(3)为了保证优质鱼类有良好的生活环境,水库管理员定期放水清库以清除水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一个数列:18,15.5,13,10.5,8,(),则第六个数应为多少?

(4)10072,10144,10216,(),10360

请同学们回答以上的四个问题

生:第一个数列的第6项为25,第二个数列的第5个数为68,第三个数列的第6个数为5.5,第四个数列的第4个数为10288。

师:我来问一下,你是依据什么得到了这几个数的呢?请以第二个数列为例说明一下。

生:第二个数列的后一项总比前一项多5,依据这个规律我就得到了这个数列的第5个数为68.

师:说的很好!同学们再仔细地观察一下以上的四个数列,看看以上的四个数列是否有什么共同特征?请注意,是共同特征。

生1:相邻的两项的差都等于同一个常数。

师:很好!那作差是否有顺序?是否可以颠倒?

生2:作差的顺序是后项减去前项,不能颠倒!

师:正如生1的总结,这四个数列有共同的特征:从第二项起,每一项与它的前一项的差都等于同一个常数(即等差)。我们叫这样的数列为等差数列。这就是我们这节课要研究的内容。

推进新课

等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数就叫做等差数列的公差,公差常用字母d表示。从刚才的分析,同学们应该注意公差d一定是由后项减前项。

师:有哪个同学知道定义中的关键字是什么?

生2:“从第二项起”和“同一个常数”

高中数学教案2

一、教学目标:

掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

二、教学重点:

向量的性质及相关知识的综合应用。

三、教学过程:

(一)主要知识:

1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

(二)例题分析:略

四、小结:

1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,

2、渗透数学建模的思想,切实培养分析和解决问题的能力。

  五、作业:

高中数学教案3

【教学目标】

1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

2.能根据几何结构特征对空间物体进行分类。

3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

【教学重难点】

教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

教学难点:柱、锥、台、球的结构特征的概括。

【教学过程】

1.情景导入

教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

2.展示目标、检查预习

3、合作探究、交流展示

(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?

(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

(3)提出问题:请列举身边的棱柱并对它们进行分类

(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)

(2)棱柱的任何两个平面都可以作为棱柱的底面吗?

(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

(5)绕直角三角形某一边的几何体一定是圆锥吗?

5、典型例题

例1:判断下列语句是否正确。

⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。< ……此处隐藏15428个字……总裁的地点到火车站再回到这个地点上的时间。这意味着,如果司机开车从现在遇到总裁的地点赶到火车站,单程所花的时间将为4分钟。因此,如果温斯顿等在火车站,再过4分钟,他的轿车也到了。也就是说,他如果等在火车站,那么他也已经等了30-4=26分钟了。但是惧内的温斯顿总裁毕竟没有等,他心急火燎地赶路,把这26分钟全都花在步行上了。

因此,温斯顿步行了26分钟。

付清欠款

有四个人借钱的数目分别是这样的:阿伊库向贝尔借了10美元;

贝尔向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊库借了40美元。碰巧四个人都在场,决定结个账,请问最少只需要动用多少美金就可以将所有欠款一次付清?

解答:

贝尔、查理、迪克各自拿出10美元给阿伊库就可解决问题了。这样的话只动用了30美元。最笨的办法就是用100美元来一一付清。

贝尔必须拿出10美元的欠额,查理和迪克也一样;而阿伊库则要收回借出的30美元。再复杂的问题只要有条理地分析就会很简单。养成经常性地归纳整理、摸索实质的好习惯。

一美元纸币

注:美国货币中的硬币有1美分、5美分、10美分、25美分、50美分和1美元这几种面值。

一家小店刚开始营业,店堂中只有三位男顾客和一位女店主。当这三位男士同时站起来付帐的时候,出现了以下的情况:

(1)这四个人每人都至少有一枚硬币,但都不是面值为1美分或1美元的硬币。

(2)这四人中没有一人能够兑开任何一枚硬币。

(3)一个叫卢的男士要付的账单款额最大,一位叫莫的男士要

付的帐单款额其次,一个叫内德的男士要付的账单款额最小。

(4)每个男士无论怎样用手中所持的硬币付账,女店主都无法找清零钱。

(5)如果这三位男士相互之间等值调换一下手中的硬币,则每个人都可以付清自己的账单而无需找零。

(6)当这三位男士进行了两次等值调换以后,他们发现手中的硬币与各人自己原先所持的硬币没有一枚面值相同。

(7)随着事情的进一步发展,又出现如下的情况:

(8)在付清了账单而且有两位男士离开以后,留下的男士又买了一些糖果。这位男士本来可以用他手中剩下的硬币付款,可是女店主却无法用她现在所持的硬币找清零钱。于是,这位男士用1美元的纸币付了糖果钱,但是现在女店主不得不把她的全部硬币都找给了他。

现在,请你不要管那天女店主怎么会在找零上屡屡遇到麻烦,这三位男士中谁用1美元的纸币付了糖果钱?

解答:

对题意的以下两点这样理解:

(2)中不能换开任何一个硬币,指的是如果任何一个人不能有2个5分,否则他能换1个10分硬币。

(6)中指如果A,B换过,并且A,C换过,这就是两次交换。

高中数学教案15

教学目标:

1、理解并掌握曲线在某一点处的切线的概念;

2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;

3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化

问题的能力及数形结合思想。

教学重点:

理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。

教学难点:

用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。

教学过程:

一、问题情境

1、问题情境。

如何精确地刻画曲线上某一点处的变化趋势呢?

如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。

如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线,该直线是经过点P的所有直线中最逼近曲线的一条直线。

因此,在点P附近我们可以用这条直线来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲)。

2、探究活动。

如图所示,直线l1,l2为经过曲线上一点P的两条直线,

(1)试判断哪一条直线在点P附近更加逼近曲线;

(2)在点P附近能作出一条比l1,l2更加逼近曲线的直线l3吗?

(3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗?

二、建构数学

切线定义: 如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。 随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。

思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?

三、数学运用

例1 试求在点(2,4)处的切线斜率。

解法一 分析:设P(2,4),Q(xQ,f(xQ)),

则割线PQ的斜率为:

当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率;

当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。

从而曲线f(x)=x2在点(2,4)处的切线斜率为4。

解法二 设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为:

当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。

练习 试求在x=1处的切线斜率。

解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为:

当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。

小结 求曲线上一点处的切线斜率的一般步骤:

(1)找到定点P的坐标,设出动点Q的坐标;

(2)求出割线PQ的斜率;

(3)当时,割线逼近切线,那么割线斜率逼近切线斜率。

思考 如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?

解 设

所以,当无限趋近于0时,无限趋近于点处的切线的斜率。

变式训练

1。已知,求曲线在处的切线斜率和切线方程;

2。已知,求曲线在处的切线斜率和切线方程;

3。已知,求曲线在处的切线斜率和切线方程。

课堂练习

已知,求曲线在处的切线斜率和切线方程。

四、回顾小结

1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。

2、根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程。

五、课外作业

《高中数学教案(汇编15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式